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Abstract

Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its
participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been
reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this
catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is
functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and
motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for
the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT),
serotonin (SERT) and norepinephrine (NET) transporters in equine sperm. We also demonstrated for the first time in equine
sperm a functional dopamine transporter using 4-[4-(Dimethylamino)styryl]-N-methylpyridinium iodide (ASP+), as substrate.
In addition, we also showed that dopamine (1 mM) treatment in vitro, does not affect sperm viability but decreases total
and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor
vanoxerine (GBR12909) and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect
of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine
phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our
results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine
uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

Citation: Urra JA, Villaroel-Espı́ndola F, Covarrubias AA, Rodrı́guez-Gil JE, Ramı́rez-Reveco A, et al. (2014) Presence and Function of Dopamine Transporter (DAT) in
Stallion Sperm: Dopamine Modulates Sperm Motility and Acrosomal Integrity. PLoS ONE 9(11): e112834. doi:10.1371/journal.pone.0112834

Editor: Chris D. Wood, Universidad Nacional Autónoma de México, Mexico
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Introduction

Dopamine is a catecholamine that participates in many

biological processes in mammals, acting on functions related to

cognition, emotions and control of motor activity, among others

[1]. In the reproductive system, high concentrations of catechol-

amines have been observed in bovine [2] and human [3] semen as

well as in the oviduct of human, pig, rabbit and cow [4,5,6,7] at

variable concentrations dependent on the oviductal region and the

estrous cycle stage analyzed [5,6,7]. It is presumed that these

catecholamines come from sympathetic nerve endings that

innervate both testis and oviduct. With respect to this, there is

evidence of expression of tyrosine hydroxylase (TH), a rate-

limiting enzyme in catecholamine synthesis, in the uterus and

cervical cells of mare [8], in neuronal-type cells of non-human

primates [9] and in human Leydig cells [10]. This raises the

possibility that catecholamines are synthesized from a source other

than that of the innervation present in testis and oviduct, implying

that sperm would be in contact with catecholamines, or at least

with L-DOPA, a precursor of dopamine, from a very early stage

during their passage through the male and female reproductive

tract.

Evidence shows that catecholamines exert their actions on

different parameters of sperm physiology. They have been shown

to induce capacitation in mouse [11], hamster [12,13] and bull

sperm [14], as well as stimulating motility in vitro, in hamster
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sperm [15] and promoting the acrosome reaction in hamster

[16,13] and bovine sperm [14].

Presence of different catecholaminergic receptors in sperm has

been reported, including the presence of a2- and b-adrenergic

receptors in mouse and human sperm [11,17] and the dopamine

type 2 receptor (DRD2) in testis, spermatogenic cells and sperm of

rat, as well as in human, bull, mouse and boar sperm [18,19].

Previously, we reported that boar sperm incubated in the presence

of 100 nM dopamine displayed a significant decrease in the

number of dead sperm at different incubation times (up to 3 hours)

compared to the control, also this treatment promoted a significant

increase in proteins phosphorylated on tyrosine in sperm

incubated with dopamine. These results suggest a protective effect

of dopamine treatment on sperm and dopamine would be acting

as a modulating agent in sperm capacitation [19]. However, when

boar sperm were incubated with higher concentration of

dopamine (1 mM), a decrease in both protein-tryosine phosphor-

ylation and sperm motility was observed [19]. Similar findings

have been reported for norepinephrine in bull sperm, where

incubation with 3.1 mM norepinephrine stimulates an increased

phosphorylation of proteins on tyrosine residues and the acrosome

reaction, whereas incubation with 3.1 mM norepinephrine result-

ed in both parameters being negatively affected [14]. This biphasic

effect of catecholamines concentrations might be explained by the

presence of adrenergic receptors and DRD2 in those findings

observed at low doses and by the possible presence of catechol-

amine transporters for findings observed at higher doses of

catecholamines. Western blot and immunocytochemical analyses

in equine sperm suggest the presence of the dopamine transporter,

DAT, however a kinetic analysis and functional characterization

are absent [19].

In the present study we show the presence of DAT transporter

in equine sperm and we investigate this transporter function and

its participation in equine sperm function. We also demonstrate

the presence of the SERT and NET transporters in equine sperm.

These results suggest a high degree of conservation of the

mammalian catecholaminergic system and the participation of

dopamine in the control of the overall mammalian sperm function.

Results

Functional dopamine transporter in mammalian sperm
In boar sperm, incubation with dopamine alters different

parameters of sperm physiology in a dose-dependent manner [19].

Here, we found in equine sperm, similar to boar sperm, that high

concentrations of dopamine (1 mM) decreased sperm motility,

tyrosine phosphorylation and acrosome integrity in in vitro sperm

capacitation assays. Using immunofluorescence and Western blot

assays, we have demonstrated the presence of the dopamine

transporter in equine sperm (Figure 1) and other species (Figure

S1). For equine sperm, a strong immunoreaction was detected in

the acrosomal region and less immunoreactivity was observed in

the principal piece of the sperm tail (Figure 1A and 1B). Negative

results were obtained when sperm samples were incubated only

Figure 1. Dopamine transporter (DAT) is present in equine ejaculated sperm. The presence of DAT in ejaculated equine sperm was
investigated with immunodetection and microscopy methods. A) Sperm were fixed and analyzed by immunofluorescence using an anti-DAT
antibody or only secondary antibody as negative control. B) Magnification of DAT immunodetection in sperm. Bar scale is 10 mm. C) 80 mg of total
protein extract from rat brain (line 1) and equine sperm (line 2) were analyzed with SDS-PAGE and Western blot using a specific human anti-DAT
antibody. Images are representative of 3 independent experiments. D) UREA/SDS-PAGE and Western blot analysis for total protein extract (100 mg)
for rat brain (line 1 and 3) and equine sperm protein extract (line 2 and 4), with (line 2 and 4) or without (Line 1 and 3) anti-Dat antibody preabsorbed
by immunogenic peptide (SC-7515 P).
doi:10.1371/journal.pone.0112834.g001
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with secondary antibody (Figure 1A). Immunoblotting against

DAT in extracts from both brain (as control) and sperm showed

the presence of an unique, specific protein band of 70 kDa in

whole protein extract from equine sperm, and several bands

(possibly different degrees of glycosylation) in the positive control

extracts (between 45–120 kDa), with a major band of 75 kDa

(Figure 1C), confirming the presence of this transporter in these

cells. Figure 1 D corresponds to Western blot analysis of both the

control and sperm protein samples (lines 1 and 3, respectively for

DAT immunodetection). The immunoreaction largely diminished

by using the preabsorbed antibody with immunogenic peptide

(Figure 1D, lines 2 and 4, respectively). Urea treatment promoted

the immunodetection of a unique band in both samples

(Figure 1D), confirming the specifity of this result.

We also evaluated the function of the DAT transporter in

equine sperm. In fresh sperm preparations, ASP+ incorporation

assays show a linear accumulation of the fluorescent molecule

during the 15 min of the assay (Figure 2A). Saturation analysis of

the DAT transporter gives a Km value of 11 mM (Figure 2B). The

inhibition assays using 50 mM nomifensine (Ki 2.6 mM for

dopamine uptake) and 10 mM bupropion (Ki 2.8 mM for

dopamine uptake) revealed a significant reduction in ASP+ uptake

and accumulation in equine sperm. Both nomifensine and

bupropion reduced dopamine analog (ASP+) transport by

2466% and 4266% respectively, values that are significantly

lower with respect to the control without inhibitor treatment

(Figure 2C).

High doses of dopamine reduce sperm motility,
acrosomal integrity and tyrosine phosphorylation in
equine sperm

After having established the presence of a dopamine transporter

at the sperm surface, the effect of high concentrations of dopamine

(0.01, 0.1 and 1 mM) on sperm cell viability, acrosomal integrity

and sperm motility were evaluated at three incubation times. The

results obtained at 1, 3 and 6 hours did not reveal significant

changes in sperm viability at the different concentrations of

dopamine used (Figure 3A). The effect of high dopamine doses on

acrosomal integrity of ejaculated sperm was also investigated.

Sperm exposed to increasing doses of dopamine (0.01, 0.1 and

Figure 2. The dopamine transporter present in equine sperm
is functional and sensitive to selective inhibitors. A) In freshly
ejaculated equine sperm, ASP+ transport was used to assess the
functionality of the DAT transporter. Fresh sperm were incubated with
8 mM ASP+ in capacitation medium and were analyzed with
fluorimetry. Accumulated fluorescence was plotted as arbitrary units
of fluorescence (AUF) as a function of transport time. Measurements
were made every 35 seconds over a total assay time of 15 minutes.
Results were plotted as the mean 6 standard error (SEM) of eight
independent assays. B) Kinetic characteristics of the DAT transporter
present in equine sperm were established by incorporation of ASP+.
Fresh sperm were incubated with different ASP+ concentrations (0 to
30 mM) in capacitation medium for 20 minutes. The difference
between fluorescence at time zero and at twenty minutes was plotted
as velocity with respect to the different ASP+ concentrations used in
the assay. Results correspond to the mean 6 standard error of an
average of eight independent experiments. C) DAT transporter
sensitivity was assessed in response to selective inhibition with
50 mM nomifensine and 10 mM bupropion. Fresh sperm were
incubated with 8 mM ASP+ in capacitation medium for 20 minutes
and the difference between fluorescence at time zero and at twenty
minutes was recorded. Transport of ASP+ was considered to be 100%
and inhibitor treatments were normalized with respect to this. Results
correspond to the mean 6 standard error (SEM) of an average of eight
independent experiments, *p,0.05.
doi:10.1371/journal.pone.0112834.g002
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1 mM) for 1 or 3 hours, showed no significant changes in

acrosomal integrity (Figure 3B). Results obtained after 6 hours of

exposure show that only concentrations as high as 1 mM

dopamine provoked a significant decrease in sperm acrosome

integrity, which is reflected by an almost 35% reduction of intact

acrosomes with respect to the control without treatment

(Figure 3B).

Total sperm motility in the presence of 0.01, 0.1 and 1 mM

dopamine was also determined. We observed a strong inhibition in

total sperm motility only at dopamine concentration of 1 mM

after incubating for 1, 3 and 6 hours (Figure 3C), similar response

was observed in progressive sperm motility analysis (data non

shown). Complementarily, fresh sperm were exposed to 1 mM

dopamine in the absence and presence of 10 mM GBR12909, a

strong and specific DAT inhibitor (Ki 1 nM for dopamine uptake).

We found that the dopamine-induced inhibition of total sperm

motility (75%) was partially reversed (40%) in the presence of

10 mM GBR12909 (Figure 4).

Finally, to evaluate possible signalling pathways involved in the

negative regulation of sperm motility by high doses of dopamine,

we assessed the overall pattern of tyrosine phosphorylation. Major

changes were observed on tyrosine phosphorylation during

different incubation times, with a biphasic and dose dependent

behavior, increassing their level at 10 mM dopamine and

decreassing their level with dopamine at 100 mM and 1 mM

(Figure 5).

Norepinephrine and serotonin transporters are
expressed in equine sperm

Using Western blot and fluorescent immucytochemical analy-

ses, we evaluated the presence of other monoamine transporters

that may be involved, albeit with lower selectivity in the

incorporation of dopamine in equine sperm. The presence of

Figure 3. High doses of dopamine reduce sperm motility and acrosomal integrity without affecting the sperm viability over time. A)
Effect of dopamine on sperm viability at 1, 3 and 6 hours of incubation. Equine sperm were incubated at 37uC with different concentrations of
dopamine (0, 0.01, 0.1 and 1 mM) in Withenn’s buffer and the quantity of viability sperm was calculated using a CASA system, with a minimum of 500
sperm analyzed per experiment. Sperm viability at different times of analysis was normalized to time zero of the control. Results are the mean 6 SEM
of four independent experiments. B) Effect of dopamine on acrosomal integrity after 1, 3 and 6 hours of incubation. Equine sperm were incubated at
37uC with different dopamine concentrations (0, 0.01, 0.1 and 1 mM) in Withenn’s buffer (enrichment with BSA and bicarbonate) and the percentage
of sperms with intact acrosomes was assessed with PSA-FITC staining and by cell count under an epifluorescence microscope. A minimum of 200
sperm were counted. The percentage of intact acrosomes was normalized to time zero of the control without dopamine. Results are the mean 6 SEM
of four independent experiments. *p,0.05 with respect to the control. C) Effect of dopamine on total sperm motility after incubation for 1, 3 and 6
hours. Equine sperm were incubated at 37uC with different concentrations of dopamine (0, 0.01, 0.1 and 1 mM) in Withenn’s buffer and the quantity
of mobile sperm was calculated using a CASA system. A minimum of 500 sperm were analyzed per experiment. Total motility at different times of
analysis was normalized to time zero of the control. Results are the mean 6 SEM of four independent experiments. **p,0.01 with respect to the
control.
doi:10.1371/journal.pone.0112834.g003
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NET and SERT transporters in equine sperm was verified by

immunodetection in whole protein extract (Figure 6A). NET and

SERT were detected in equine sperm in form of specific bands of

70 kDa and 58 kDa, respectively (Figure 6A).

By immunofluorescence assay, NET distribution was specific in

acrosome region in the head sperm (Figure 6B). A similar pattern

was found for SERT in the head, which also presented a weak

signal in the mid-piece and the tail (Figure 6B).

Discussion

Our results clearly indicate that equine sperm (and other

mammalian species) express a wide range of proteins from the

dopaminergic system, specifically monoamine transporters, such as

dopamine, norepinephrine and serotonin transporters. These

findings, together with existing knowledge from other research

literature [18,19] reveals the presence of a dopaminergic-type

system in sperm cells, suggesting that sperm cells contains several

proteins for binding and uptake of catecholamines as signaling

molecules or modulators of sperm physiology in mammals.

Mammalian sperm are exposed to variable concentrations of

catecholamines during their passage through the reproductive

tracts, both male and female. Catecholamines, especially norepi-

nephine, have been reported to participate in testicular function

[20,21], in sperm travel from the epididymis through the vas

deferens [22,23]. Other studies performed in different portions of

human fallopian tubes (isthmus, ampulla and fimbriae) showed

that the highest concentrations of catecholamines are found during

the preovulatory and ovulatory phases [5]. Considering the effect

of high doses of dopamine in in vitro sperm function, particularly

in the control of sperm motility, maintenance of acrosomal

integrity and tyrosine phosphorylation in a wide range of target

proteins, it might be suggested that these higher catecholamine

Figure 4. Dopamine transporter inactivation attenuates the
inhibitory effect of 1 mM dopamine on total sperm motility.
Equine sperm were incubated at 37uC with 1 mM dopamine, with and
without the specific DAT inhibitor, 10 mM GBR12909 for 1 hour, in
Withenn’s buffer. Total motility was calculated using the CASA system,
with a minimum of 500 sperm analyzed per experiment. Total motility
was normalized to time zero of the control. Results are the mean 6 SEM
of four independent experiments. The different letters show significant
changes between each treatment with p,0.01. We have considered in
each experiment a control to normalize the results to the basal sperm
condition before the incubation with dopamine and its respective
vehicle.
doi:10.1371/journal.pone.0112834.g004

Figure 5. High levels of dopamine reduce tyrosine phosphorylation during capacitation in equine sperm. Effects of dopamine on
tyrosine phosphorylation after different times of incubation and dopamine concentrations (0, 0.01, 0.1 and 1 mM) were assessed by Western blot
using PY20 anti-phophotyrosine antibody. The image is representative of two independent experiments.
doi:10.1371/journal.pone.0112834.g005
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concentrations could participate in the modulation of in vivo
sperm function. This hypothesis is reinforced by previous results

from our laboratory in which both total and progressive motility

and also phosphotyrosines of boar sperm in in vitro capacitation

assays were inhibited by dopamine without affecting sperm cell

viability [19]. On the other hand, lower concentrations of

catecholamines have been found in the ampullary region, where

fertilization takes place, as in the post-ovulation phase, in which

sperm motility is recovered and sperm are released from the

reservoir for fertilization [5]. It is also in concordance with our

previous results in boar sperm, which showed that low concen-

trations of dopamine (100 nM) potentiate sperm motility, and total

phosphotyrosines [19], suggesting a putative stimulatory effect of

dopamine on sperm motility in this region of the female

reproductive tract.

We have hypothesized that catecholamine could be concen-

trated in micro-domains from mammalian oviduct (ampulla and

isthmus region) and promote a sperm selection during ovulation.

Many authors have reported higher concentration of catechol-

amine in oviductal fluid at different stages of ovarian activity.

During rabbit’s oestrus it has been found that dopamine and

norepinephrine concentrations are close to 8 and 27 mM,

respectively in the isthmus region, and oscillating dopamine

concentrations between 1–10 mM during ovulation and coitus [6].

Serum concentrations of dopamine and norepinephrine in rabbit

are close to 600 nM and 5 nM, respectively [24,25]. On other

hand, the physiological concentration of dopamine measured in

equine plasma are close to 3.5 mM, and norepinephrine and

epinephrine are 0.3 and 0.1 mM, respectively [26]. Up today,

there is no information about dopamine levels in equine seminal or

oviductal fluid. However, plasma concentrations of dopamine

outlined above are 5 times higher than in other mammals,

suggesting that these would also be more elevated in both semen

and oviductal fluid.

The ASP+ transport assays demonstrate the presence of a

functional dopamine transporter in equine sperm, suggesting that

this transporter would be capable of receiving and generating the

modulatory effects of this catecholamine. The Km obtained for

this transporter was of approximately 11 mM. There seem to be no

previous measurements of equine DAT transport activity in the

literature, but the Km of DAT for ASP+ in human, using cultured

HEK293 cells transfected with human DAT, reveal a Km of

3.2 mM [27,28]. We have demonstrated that DAT transporter has

a Km 3 times higher than human (and mouse), suggesting that this

transporter has lower affinity for dopamine and could require

higher levels of substrate to operate. This higher value of Km

suggests an insensitivity of DAT transporter to lower doses of this

catecholamine, which was demonstrated in this work and on the

other hand, higher doses would have deleterious effects on sperm

physiology.

However, we cannot dismiss the participation of the NET and

SERT transporters in the uptake of ASP+ [29,30], given that we

have verified and demonstrated the presence of both transporters

in ejaculated equine sperm. This situation would explain the

partial reversal observed with 50 mM nomifensine and 10 mM

bupropion on the in ASP+ uptake (Figure 2C).

An unexpected event is that 50 mM nomifensine completely fails

to inhibit the incorporation of ASP+ by DAT, NET and SERT

(2.6 mM, 4.7 mM and 4 nM Ki for the incorporation of dopamine,

respectively), on the other hand, 10 mM bupropion would be

sufficient to completely inactivate DAT and NET, but not SERT

(2.8 mM, 1.4 mM and 45 mM of Ki for the incorporation of

dopamine, respectively). We have not disregarded the presence of

non-classical monoamine transporters or non-neuronal transport-

ers that are not affected by classical inhibitors of monoamine

transporters [31], suggesting thus that the modulatory role of

dopamine on sperm physiology may be a complex, as yet unknown

panorama.

In summary, we have demonstrated that equine sperm express

dopamine receptors and transporters. Moreover, our results

indicate that this dopaminergic system is functional in the studied

sperm. Considering that catecholamines are present throughout

the entire passage of sperm along the male and female

reproductive tracts, it is logical to think that they may fulfill some

function in sperm and reproductive physiology. We have also

shown that high dopamine concentrations dramatically affect

sperm motility without altering viability; however these sperm

could experiment a decrease in its hability to capacitation. In light

Figure 6. SERT and NET are present in ejaculated sperm. The presence and location of other monoamine transporters was
determined in equine sperm. A) The presence of SERT and NET transporters were verified in equine sperm (line 2 and 4) by Western blot assays. A
protein extract from whole rat brain (line 1 and 3) was used as a control. Images are representative of 3 independent experiments. B) The localization
of SERT and NET was performed by indirect immunofluorescence assays. Images are representative of 3 independent experiments. Bar scale is 10 mm.
doi:10.1371/journal.pone.0112834.g006
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of the results obtained in this study, greater concentrations of

dopamine could help immobilize sperm in the oviductal reservoirs

promoting a possible positive selection of the best sperm until the

ovulation, just at the moment in which catecholamine levels fall.

Subsequently, other factors present in oviduct and follicular fluid

could stimulate sperm motility and capacitation, thus enhancing

the oocyte penetration in the appropriate segment. Finally, the

gradient in the concentration of dopamine in the oviduct (and

oviductal/follicular fluids) would be a simple and effective system

to modulate the sperm physiology in the oviduct and optimizing

the fertility in equine.

Materials

Antibodies anti DAT (sc-7515), NET (sc-51157), SERT (sc-

1458), DAT peptide (sc-7515 P), nomifensine (sc-253197) and

bupropion (sc-217802) were obtained from Santa Cruz Biotech-

nology, Inc. Anti PY20 (P4110) and anti b-tubulin (T5201),

dopamine (H8502), tetrazolium blue (N5514) and PSA-FITC

(L0770) were obtained from Sigma Aldrich. ASP+ (D289), anti-

goat Alexa 488 (A11055) were obtained from Invitrogen and

vanoxerine (GBR12909–[0421]) was obtained from Tocris Bio-

science. Other reagents used were acquired from Sigma Aldrich or

Merck.

Methods

Ethics statement
Human semen samples were obtained by masturbation and

collected in sterile plastic containers from volunteer’s healthy

young men and with previous written consent, the protocols used

in this study were approved by the Committee Bioethic of Medical

Science of Universidad Austral de Chile (CI#213-2014).

The stallions samples used were obtained from animals

following the regulations of the Committee on the Bioethics of

Animals for Research of Universidad Austral de Chile, instance

that reviewed and approved the protocols used in this study

(C#151-2014). The only manipulation of animals was semen

collection using standard procedures established by Haras Militar

Pupunahue (Ejército de Chile). Bovine sperm samples used

correspond to frozen commercial doses obtained from Centro de

Inseminación Artificial (Universidad Austral de Chile). Boar sperm

samples used correspond to refrigerated commercial doses

obtained from Servicios Genéticos Porcinos, S. L. (Roda de Ter,

Spain).

Sperm samples
Equine sperm. Ejaculates were obtained from six stallions

(Heavy Draft breeds): Ardennés (2), Percherón (2) and Bretón de

Montaña (2), aged between 7 and 15 years, property of Haras

Militar Pupunahue, XIV Región de los Rı́os, Máfil, Valdivia,

Chile. The Haras Militar Pupunahue, as a partner member of the

Fondef D08I1076 proyect, explicitly approved the use of the

samples for scientific research purposes. All stallions were proven

to be fertile. Ejaculated sperm obtained and used for the study had

viability and motility parameters of greater than 70 and 65%

respectively.

Semen was collected with the aid of an artificial vagina, was

filtered to eliminate the gel fraction and was diluted to a ratio of

1:1 with UHT skimmed milk at 37uC and refrigerated at 4uC for

transport to Laboratory of Cryobiology and Sperm Function

Analysis, Universidad Austral de Chile, Valdivia. Once in the

laboratory, semen was centrifuged at 6006g for 20 minutes and

the pellet re-suspended in incubation medium or Whitten’s

medium (100 mM NaCl, 4.7 mM KCl, 1.2 mM MgCl2,

5.5 mM glucose, 22 mM Hepes, 4.8 mM lactic acid hemicalcium

salt, 1 mM pyruvate, pH 7.25) in the absence of albumin (BSA),

sodium bicarbonate and progesterone. Samples were maintained

at 4uC until required for different assays. Previous to each

experimental procedure, sperm viability and motility was mea-

sured, rejecting those ejaculated sperm with a viability of less than

70% and a motility of less than 65%. Whitten’s medium modified

(enrichment with BSA and bicarbonate) was used during each

assay performance, and all experiments were done at different

times of incubation (in presence or absence of dopamine) by 1, 3 or

6 hours. In each case, as control, was evaluated the basal status of

viability, acrosomal reaction or motility, previous to the start

experiment and when the experiment was finished.

Bovine, boar and human sperm samples for Western blot

analisys. Bovine spermatozoa ejaculates were obtained from

the Centro de Inseminación Artificial Universidad Austral de

Chile. Boar sperm samples used correspond to refrigerated

commercial doses obtained from Servicios Genéticos Porcinos,

S.L.(Roda de Ter,Spain). Human semen was obtained by

masturbation and collected with posterior liquefaction in sterile

plastic containers from volunteer’s healthy young men. Samples

were processed for protein extraction as has been previously

reported [32] with modifications.

Detection of DAT, NET and SERT monoamine

transporters. With the aim of detecting the presence of the

dopamine transporter in sperm, as well as the norepinefrine and

serotonin transporters, indirect immunofluorescence and Western

blot techniques were used.

Indirect immunofluorescence. For immunodetection by

indirect fluorescence, bovine, equine and human sperm were

utilized according to the protocol described by Ramı́rez et al.,

(2009) [19], with some modifications. Smears of the different

sperm were carried out on new slides, fixed with 4% paraformal-

dehyde and then blocked for 60 minutes at room temperature (5%

BSA, 0.3% Triton x-100 in phosphate buffered saline, pH 7.4).

After this, they were incubated overnight with the different

primary antibodies specific for DAT, NET, SERT, in a moist

chamber at 4uC. As a negative control, each one of the primary

antibodies was preabsorbed with the corresponding immunogenic

epitope. Later incubation with the secondary antibody was

performed, with antibodies being conjugated to fluorochrome

Alexa 488 for 60 minutes at room temperature, in a moist

chamber, before finally being mounted for observation with an

epifluorescence microscope. Negative controls were obtained

when sperm samples were incubated with preabsorbed antibodies

with the corresponding peptide for DAT (data not shown).

Western blot. Samples were processed for protein extract

preparation as has been previously reported [32] with modifica-

tions. Protein extracts from rat brain, equine, bovine and human

sperm were homogenized in extraction buffer (10 mM Tris HCl

pH 7.5, 15 mM EDTA, 150 mM NaF, 0.6 M sucrose, 15 mM 2-

mercaptoethanol, 1 mM benzamidine, 1 mM sodium orthovana-

date, 1 mM PMSF). In brief, samples were frozen at 280uC for

40 minutes in extraction buffer; the extracts were then rapidly

thawed and sonicated at 50% power, in two rounds of 10 seconds,

each one in ice, frozen again at 280uC for 40 minutes, rapidly

thawed once again and were passed ten times through a tuberculin

syringe. Samples were quantified using the Bradford method [33].

80 mg whole protein extract from sperm were separated by SDS-

PAGE and electrotransfer to nitrocellulose membrane for immu-

noblotting using a primary antibodies, diluted 1:400 in blocking

solution (0.3% Tween-20, 1% BSA and 5% skimmed milk) and

incubated overnight, continuously stirred, at room temperature.
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For complementary Western blot analysis to verify the specifity of

antibodies, the samples were denaturated at 65uC for 20 min in

loading buffer with 6 M Urea For immunodetecction reaction we

used primary antibodies blocked with their specific antigens before

being incubated with the membranes. The following day,

membranes were washed in 0.1% Tween-20 solution in phosphate

saline buffer and then incubated with their respective secondary

antibodies conjugated to peroxidase. Finally, immunoreactive

signal was revealed with a solution of luminol-hydrogen peroxide

(ECL, Thermo Sci.) and exposed on photographic film.
Incorporation and saturation of ASP+

transport. Dopamine transport was performed as described

by Mason et al., (2005) [28]. For ASP+ incorporation experiments,

equine sperm were incubated with 8 mM ASP+ for 10 min at

37uC. A total of 240 readings were made, every 5 seconds.

Saturation curves were tested at different concentrations of ASP+

(0 to 30 mM) at a fixed reading time of 20 min. All ASP+ dilutions

were performed in PBS with 30 mM Trypan blue to eliminate

extracellular fluorescence. Changes in intracellular ASP+ concen-

tration were quantified by the increase in fluorescence emitted at

609 nm, readings performed with a microplate reader.
Analysis of dopamine effects on sperm physiology. We

have previously shown that high dopamine doses inhibit capac-

itation and motility [19]. In an aim to elucidate whether DAT

activity is involved in the high dopamine dose effect, incubation

with 0.01, 0.1 and 1 mM dopamine was performed, with and

without DAT inhibitors, to discover how this treatment affects

sperm viability, motility and acrosomal integrity. The capacitation

medium consisted of Whitten’s medium supplemented with BSA

(7% final) and sodium bicarbonate (25 mM final).
Viability Analysis. This parameter was analyzed with the

viability module of the computer-assisted sperm analysis (CASA)

system (SCA Microptics), using a biochromatic fluorescent stain

based on the use of acridine orange (10 mM) and ethidium

bromide (2.5 mM) fluorophores in a protocol modified from

Cortés-Gutiérrez et al., (2008) [34]. Smears of each of the times (0,

1, 3 and 6 hours) and treatments (control, 0.01, 0.1 and 1 mM

dopamine and 1 mM dopamine plus 10 mM of the DAT inhibitor,

GBR12909) were prepared to a dilution ratio of 1:1 between the

samples and a mixture of both fluorochromes. They were then

observed with an epifluorescent microscope coupled to the CASA

system, with a 10X objective. A minimum of 500 sperms were

counted per experiment. Living sperm incorporate the acridine

orange, which joins with DNA, emitting a green color on

excitation at 488 nm. Dead sperm show damage to the plasma

membrane and are permeable for ethidium bromide, which joins

with DNA and emits a red colour when excited at 488 nm.
Acrosomal integrity. The acrosomal status analysis or

acrosomal reaction in sperm after dopamine incubation was

performed exactly as described Ramı́rez et al., (2009) [19], without

modifications. The number of intact acrosomes after dopamine

treatment was normalized using the number of intact acrosomes at

basal conditions before the assay. The results were expressed as a

ratio between sperm treated after 1, 3 and 6 hours and non-treated

before starting the assay.

Total and progressive motility. This parameter was

analyzed with the motility module of the CASA system (SCA

Microptics). To perform this analysis, 5 ml samples of each one of

the treatments were used, mounted onto a slide pre-warmed to

37uC and covered with a coverslip. Samples were analyzed in a

microscope coupled to a high-speed camera (takes 25 images per

second of various fields), at a magnification of 200X. Images were

processed and analyzed with the software, Sperm Class Analyzer

4.2.0.1. Progressive sperm were defined as those with values of

straightness coefficient (STR).75% and with linearity coefficient

(LIN).50%. Spermatozoa were also classified as slow, medium

and fast following their curvilinear velocity (VCL) values. In this

classification, slow sperm were those with VCL between 10 mm/

sec and 45 mm/sec, medium sperm had a VCL between 46 mm/

sec and 90 mm/sec and fast sperm were those with VCL.90 mm/

sec. Spermatozoa with VCL values below 10 mm/sec were

considered non motile.

Statistical analysis. For time-dependent ASP+ incorpora-

tion assays, saturation curves, inhibition of ASP+ transport, the

effect of dopamine on viability, acrosomal reaction, total and

progressive motility and DAT inhibition, the mean 6 the standard

error (SEM) of the medium was displayed graphically. The

different assays were analyzed statistically with a Student’s t-test

with Bonferroni correction for viability and variance analysis

(ANOVA), using GraphPad v5.0 for Windows software. A

difference was considered to be statistically significant and highly

significant when p,0.05 and p,0.01 respectively.

Supporting Information

Figure S1 Presence of Dopamine Transporter (DAT) in
mammalian sperm. Eigthteen micrograms of total protein

extract from boar (line 1), human (line 2), stallion (line 3), and bull

(line 4) sperm were analyzed by SDS-PAGE and Western blot

using a specific human anti-DAT antibody. Positions of relevant

molecular weight standards are indicated on the left. Images are

representative of three independent experiments.

(TIF)
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